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ABSTRACT 

 The Office of the Chief of Naval Operations (OPNAV) uses a hierarchy of 

simulation models as part of scenario-based planning to help decide which new platforms 

to procure and how to employ them. Simulation is used at every level of the acquisition 

process, from platform design to tactics to force structure. In hierarchal combat modeling, 

the mean output of lower-level, higher-resolution models are used as inputs to higher-

level, lower-resolution models. The goal of this process is to inform military commanders 

how design changes in new platforms will affect tactical performance, and how changes 

in tactical performance will enhance campaign effectiveness.  

This thesis uses a hierarchal modeling structure to examine whether including the 

distributions of mission model inputs instead of just the mean can affect campaign model 

results. A mission model of a one-on-one submarine battle is developed to determine the 

mean time to kill (MTTK) for the belligerents. The MTTK is sampled in a variety of 

ways, including just the mean, and used to calculate the attrition coefficients for a 

stochastic Lanchester campaign model that contains 18 Blue and 25 Red submarines. The 

outputs of the campaign models are analyzed statistically. The results indicate that the 

sampling methodology has a significant impact on the mean probability Blue wins the 

campaign and the mean number of losses Blue takes when it wins. In addition, sampling 

methodology has a significant effect on the standard deviation for the probability Blue 

wins and the amount of losses Blue expects to take when it wins. These results also have 

practical significance: estimates of Blue’s average odds of winning range from 0.58 to 

0.94, while estimates of average losses range from 4.69 to 8.31. Hierarchal combat 

models must adopt methods for including the entire distribution of lower-level model 

outcomes in order to better represent risk. 
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THESIS DISCLAIMER 

The reader is cautioned that the computer programs presented in this research may 

not have been exercised for all cases of interest. While every effort has been made, within 

the time available, to ensure that the programs are free of computational and logical 

errors, they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

 The Office of the Chief of Naval Operations (OPNAV) uses a hierarchy of 

simulation models as part of scenario-based planning to help decide which new platforms 

to procure and how to employ them. Simulation is used at every level of the acquisition 

process, from platform design to tactics to force structure. In hierarchal combat modeling, 

the mean output of lower-level, higher-resolution models are used as inputs to higher-

level, lower-resolution models. The goal of this process is to inform military commanders 

how design changes in new platforms will affect tactical performance, and how changes 

in tactical performance can enhance campaign effectiveness. By using hierarchal 

simulation models, the Navy can gain insight into questions such as “how will better 

sensors affect the outcome of a blue water battle?” Senior leadership can then use this 

information to determine the best investments to achieve and sustain warfare dominance 

within a particular budget. 

This work explores how error propagates through hierarchal simulation models at 

the mission and campaign levels to quantify the degree of inaccuracy between the two 

methods using a “ground up” approach. First, it develops a mission-level model for one 

on one submarine combat in Map Aware Non-uniform Automata (MANA) simulation, an 

agent-based simulation that can model the different behavioral postures of submarines. 

The measures of performance (MOP) for this model are based on open source operating 

characteristics of submarines. The measures of effectiveness are mean time to kill 

(MTTK) and the average probability each side wins. The result is excluded if no kill is 

made. Uncertainty in the MOPs is obtained with two different designs of experiments 

(DOEs), nearly orthogonal Latin hypercube (NOLH) and resolution V fractional factorial 

(R5FF), to determine how the mission model experimental design affects the MOE.  

Next, the work constructs a stochastic Lanchester campaign model. The attrition 

coefficients are determined by multiplying the reciprocal of a randomly sampled MTTK 

value by the average probability of winning. Sampling is used to account for the variance 

in the distributions of MANA output metrics. Several types of sampling are explored: 

sampling one side’s MTTK in isolation with the other’s mean value, sampling both sides, 
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constructing a NOLH DOE using the min and max value, constructing a NOLH DOE 

using a range that excludes outliers, and using both sides’ means. In order to isolate the 

effects of the sampling method, the Blue and Red units are held constant at 18 and 25, 

respectively. 

The analysis finds that there is a statistically significant difference in average Blue 

MTTK for the NOLH (μ = 15.98, σ = 7.53) and R5FF (μ = 18.33, σ = 12.04) data sets. In 

addition, there is a significant difference between the variance of Blue MTTK for the 

NOLH and R5FF designs, according to the Levene test. The effect of the experimental 

design used on Red MTTK and winning percentage is not statistically significant. 

Therefore, the analysis continues distinguishing both data sets. It uses “FF” to denote 

campaign simulations that sampled the R5FF data set, and “NOLH” to denote campaign 

simulations that sampled the NOLH data set. 

The analysis fits a one-way analysis of variance (ANOVA) model to determine 

the effect of sampling methodology on campaign MOEs. The results indicate that the 

sampling methodology has a significant correlation with the probability Blue wins the 

campaign and the amount of losses Blue takes when it wins. In addition, sampling 

methodology has a significant effect on the standard deviation for the probability Blue 

wins and the amount of losses Blue expects to take when it wins.  

These results also have practical significance in assessing the risk to an 

operational commander. The graphs in Figure 1 and Figure 2 illustrate this significance 

graphically. In Figure 1, the estimated odds that Blue wins the campaign vary 

dramatically based upon the sampling method. This is because the different sampling 

methods produce input variables with different means and variances, leading to different 

campaign simulation outputs. Similarly, Figure 2 displays the chances that Blue loses a 

certain amount of submarines given it wins the battle. Again, the risk changes 

significantly based upon the method used to construct the hierarchal simulation. 

This study demonstrates that the effect of accounting for the distribution in random 

input variables has a significant impact on campaign model results. Further research should 

be conducted to determine which method provides the best estimate of the output MOE. 
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Figure 1. Graph of the average probability Blue wins versus sampling 

methodology. 

 

Figure 2. Graph of estimated probability for losing > 3, > 5, and > 9 

submarines in this campaign.  
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I. INTRODUCTION 

A. BACKGROUND: WHY SIMULATION? 

The Office of the Chief of Naval Operations (OPNAV) uses a hierarchy of 

simulation models as part of scenario based planning to help decide which new platforms 

to procure and how to employ them. As shown in Figure 1, which displays a pyramid 

representation of the hierarchal combat modeling process, simulation is used at every 

level of the acquisition process, from platform design to tactics to force structure. The 

outputs of models on the lower levels of the pyramid are used as inputs to models on the 

next level.  

 

Figure 1. Hierarchal combat model process (from Cappellini 2011). 

The use of simulation at each level is useful for several reasons. First, engineering 

simulations are useful because testing of military equipment, particularly destructive 

testing, is costly. The unit cost estimate of a single F/A-18 strike fighter is $57 million 

(U.S. Navy 2009), while the unit cost of a single Mk 48 Heavyweight Torpedo is between 

$2-3 million (Defense Industry Daily Staff 2014). These high costs prevent the Navy 

from conducting large-scale destructive tests and live fire exercises to determine their 

effectiveness. Simulation helps ensure that the design is sound before proceeding to 

building prototypes and conducting the limited number of feasible live tests. 
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Second, the Navy cannot conduct live-fire exercises to test tactics because doing 

so would not only result in the loss of costly equipment, but also potentially sacrifice 

lives. Consequently, mission-level combat simulations are useful because they allow the 

Navy to evaluate specific platform effectiveness and assess tactical doctrine. The Navy 

uses the results of these simulations to develop tactical publications and to help train its 

operators to employ ships, aircraft, and submarines in ways that give them the best 

chance of success. 

Finally, campaign models help shape the force structure of the Navy as a whole. 

The acquisition of major combatant platforms occurs over decades. For example, the 

Navy initially drafted plans for the Virginia Class submarine in 1991. General Dynamics 

delivered the first ship of its class, USS Virginia (SSN 774), to the Navy 13 years later in 

October 2004. The Navy plans to procure Virginia class submarines until 2043, and plans 

to operate them until 2060 (Osborn 2014). A submarine designed in 1991 must be 

capable to combat a threat in 2060, almost 70 years later. As a result, the Navy must 

anticipate the nature of future conflicts and develop flexible platforms that can adapt to 

emerging threats. Campaign models allow the Navy to analyze the outcome of potential 

future conflicts given a particular force structure. They even allow the Navy to analyze 

the effects of capabilities and weapons platforms that are in early development for both 

the U.S. and other nations. The outcomes of these models identify capability gaps and 

help develop the focus of future platform acquisitions.  

The goal of this process is to inform military commanders how design changes in 

new platforms may affect tactical performance, and how changes in tactical performance 

can enhance campaign effectiveness. By using hierarchal simulation models, the Navy 

can gain insight into questions such as “how will better sensors affect the outcome of a 

blue water battle?” Senior leadership can then use this information to determine the best 

investments to achieve and sustain warfare dominance within a particular budget. 
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B. LITERATURE REVIEW 

1. Intelligent Experimental Design  

The use of combat simulations within the Department of Defense (DOD) presents 

additional challenges. These simulations are complex, computationally intensive 

programs that take a long time to run. In addition, the simulations analyze dozens of 

variables that each has multiple levels. In general, to fully explore an experiment with m 

levels and k variables requires mk runs multiplied by the number of replications needed 

(Sanchez et al. 2012). This is called a full factorial design. To illustrate how simulations 

can quickly grow to become infeasible, one replication of an experiment that examines 

the interaction of all combinations of 30 variables at two levels, such as low and high, 

requires over 109 runs. If each run took just one second, then a single experiment would 

take over 34 years. To do the replications required to obtain output that can be analyzed 

with statistical techniques would take multiple lifetimes (Sanchez et al. 20120). 

Additionally, this design is not capable of analyzing for non-linearity in the effects 

because it only samples the end-points. In the world of military simulation, an experiment 

with 30 factors is relatively small, and the ability to run them in one second is usually not 

possible. 

There are several techniques available to reduce the amount of simulation runs 

required to obtain useful analysis. This thesis selects two techniques for comparison: 

resolution V fractional factorial (R5FF) and nearly orthogonal Latin Hypercubes 

(NOLH). The fractional factorial design reduces the amount of runs needed by some 

factor of two by assuming higher level interactions are negligible (Sanchez and Sanchez 

2005). The NOLH design reduces the amount of runs by calculating an uncorrelated 

matrix of design points for all the factors under consideration (Cioppa and Lucas 2007). 

After the experiment is completed in either design, an analyst can fit a regression meta-

model to the results to determine which factors are statistically significant and their 

relationship to the output (Cioppa and Lucas 2007). By employing thoughtful 

experimental design and fitting meta-models to the output, analysts can reduce the 

amount of simulation runs required to obtain statistically useful output while analyzing a 

broader range of factors. 
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2. Simulation Optimization 

As mentioned previously, a primary goal of the military simulation process is to 

help senior military and political leadership decide where to allocate resources for future 

force structure. Once the relationship between input factors and the output measures of 

effectiveness (MOE) is understood, the next step is to determine how to create the best 

possible military force structure. This concept is called simulation optimization, and 

provides a more efficient means of determining the optimal factor settings than a brute-

force approach of iteratively running a simulation until the analyst stumbles upon the 

answer. One method of achieving this goal is to develop a linear optimization algorithm 

for the meta-model to determine the optimal factor settings (Osorio and Chong 2015). 

These programs can then be solved using commercial linear program solvers. 

Another method for optimizing meta-models uses the statistical software JMP, 

developed by SAS. JMP has a “prediction profiler” in its regression tools that allows 

analysts to vary inputs via slider bars and observe the change in output. This offers a 

simpler approach that is more user-friendly to analysts because it does not require one to 

develop and program an optimization algorithm. Therefore, this is the method utilized by 

OPNAV N98, Air Warfare and The Maritime Dominance Branch of Mission Engineering 

Analysis at Patuxent River (Pax River) when modeling future platforms. 

3. Hierarchal Meta-Modeling 

Analysts at N98 and Pax River take the meta-modeling optimization process one 

step further by using hierarchal meta-modeling. This develops a series of regression 

equations that models the hierarchal combat simulation pyramid displayed in Figure 1. 

Each level of the pyramid has its own meta-model developed based upon the results of 

their respective simulation outputs. The hierarchal meta-model is a recursive equation 

where the regression equation for each lower-level model serves as the independent 

variables for the higher level models. This allows analysts to estimate the effect of 

engineering changes to platforms, such as P-8 radar range, on campaign anti-submarine 

warfare (ASW) effectiveness using JMP’s prediction profiler. This hierarchal meta-
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modeling process attempts to eliminate the need to re-run a chain of complex simulations, 

which takes up to a year to accomplish. 

C. RESEARCH PROBLEM: MEASURING UNCERTAINTY 

Unfortunately, each time an analyst performs a linear regression there is 

uncertainty in the output. The hierarchal meta-modeling process has no known way to 

propagate uncertainty; each factor in the campaign meta-model is based upon a point 

estimate for the mean in the lower-level meta-models. As a result, the variance 

represented in the campaign hierarchal meta-model does not accurately represent the 

variance in the actual output from the campaign simulation (Lucas 2000), (Davis, 

Exploratory Analysis Enabled by Multiresolution, Multiperspective Modeling 2001), 

(Cappellini 2011). In addition, it is possible that this method introduces bias into 

estimating the mean for measures of effectiveness from a campaign level model. Thus, 

the analyst employing this technique cannot accurately quantify the risk. 

D. SCOPE OF THESIS 

This work explores how error propagates through hierarchal simulation models at 

the mission and campaign levels to quantify the degree of inaccuracy between the two 

methods. It develops a mission-level model for one on one submarine combat in Map 

Aware Non-uniform Automata (MANA), an agent based simulation that can model the 

different postures of submarines. It feeds the results from MANA into stochastic 

Lanchester campaign models by using different sampling techniques. Next, the resulting 

campaign measures of effectiveness (MOEs), average winning percentage, W, and 

average Blue attrition when Blue wins, will be compared using statistical analysis. 

Finally, the study will determine whether the differences have real-world significance in 

determining the optimal force mix and present a risk assessment for commanders.  
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II. MODELING TOOLS 

A. MANA 

Map Aware Non-uniform Automata (MANA) was developed by the New Zealand 

Defense Technology Agency (DTA) (McIntosh 2009). It is an agent-based simulation 

software package that employs a time-stepped, stochastic, mission-level modeling 

environment. It creates a modeling environment that facilitates an abstraction of a 

scenario that captures the essence of the physical and behavioral aspects, but avoids 

unnecessary details. Its intended use of providing a quick-turn ability to explore a wide 

range of possible outcomes is ideal for conducting the extensive statistical analysis that is 

explored in this thesis. 

There are several features in MANA that make it an ideal choice of mission-level 

model for this analysis. As an agent-based simulation, it employs entities of any size that 

share common physical and behavioral characteristics. The physical characteristics 

include, but are not limited to, sensor capabilities, weapon effectiveness, speed, and fuel 

capacity. This feature allows the user to quickly and easily create units that have multiple 

sensors and weapons using engineering design specifications. The behavioral 

characteristics allow the user to define the rules for how a unit behaves and interacts with 

other units, such as search patterns, rules of engagement, and target prioritization. Since 

the agents in this simulation are submarines that have multiple sensors, weapons, and 

distinct search patterns, the use of an agent-based simulation like MANA that can 

incorporate all of these attributes allows for modeling of the mission scenario. Figure 2 

and Figure 3 display screenshots of the sensor and weapons input, respectively. 
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Figure 2. MANA sensor characteristics screenshot. 

   

Figure 3. MANA weapons characteristics screenshot. 
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However, MANA does have some limitations that are applicable to this analysis. 

First, the agents in MANA cannot exercise fire control over wire-guided munitions. 

Guided weapons such as submarine launched heavyweight torpedoes must be modeled to 

either hit on a straight path or miss. In addition, MANA cannot force an agent to shoot a 

torpedo down a bearing, which it would do when conducting a ‘snapshot’ against an 

incoming torpedo from an unknown source. The work-around for this is to create a 

dummy agent that travels with the weapon, which the target submarine can use to fire 

upon. Finally, there is no specific shooter-to-target probability of kill. The effectiveness 

is a function only of the weapon employed. In the context of ASW, the unit-on-unit 

effectiveness can be adjusted by modifying the sensor probability of detections. 

B. CAMPAIGN MODELS 

The analysis divides the campaign into discrete sub-campaigns for modeling. 

Researchers for the Rand Corporation employed this methodology in a naval campaign 

analysis in the Mediterranean Sea (Kelley 1974). The underlying assumption is that 

because military ships, aircraft, and vehicles are built to do a specific set of missions, 

units will primarily engage a particular type of enemy force. For example, Blue SSNs 

tasked with anti-submarine warfare (ASW) clearing will only engage Red submarines 

and will not participate in anti-surface warfare (ASUW) combat. However, the 

underlying MOE for the overall campaign is the force exchange ratio. This is what 

enables analysts to divide the campaign to be analyzed into distinct phases with the 

appropriate units and then aggregate the results. Using this technique, this thesis focuses 

on the error propagation within the Blue submarine ASW operation sub-campaign. 

1. Python 2.7 and JMP version 12 

The stochastic Lanchester campaign models are coded using Python 2.7, an open 

source language available at http://www.python.org. Python is selected because it is an 

open-source coding language with several free analytical packages with extensive user 

documentation. In addition, the Python coding language is very readable, so researchers 

interested in follow-on work can more easily implement the scripts developed for this 

research. 
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The statistical analysis is conducted using JMP version 12. JMP is a windows 

based statistical software package that allows analysts to visualize data manipulation and 

to employ advanced analytical techniques without the need for programming. It is 

selected for this thesis primarily because DOD analysts and engineers employ the 

software suite to perform hierarchal meta-modeling with regression techniques. Its most 

useful feature for this task is the dynamic prediction profiler, shown in Figure 4. In 

Figure 4, each factor is constructed from the residuals of a meta-model built from results 

of its respective simulation. The residuals are input into the regression equation for the 

campaign MOE. This feature allows analysts to alter factors and see the effect on the 

output real-time. In addition, it links the effect of changing engineering specifications to 

campaign effectiveness even though engineering specifications cannot be input directly 

into campaign simulations. In this way, the prediction profiler provides a coarse but fast 

optimization technique that can be employed without the need for commercial solvers. 

 

Figure 4. Prediction Profiler Example 

2. Lanchester Models 

Frederick Lanchester developed a series of differential equations to 

mathematically model combat over time. Each force’s attrition is dependent upon two 

factors; the amount of enemy forces and the enemy’s effectiveness in battle. He 

developed two general models: the linear case, which modern campaign analysts use to 

model forces employing area fire, and square case, which modern campaign analysts use 
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to describe forces employing aimed fire (Lanchester 1916). The campaign simulations in 

this research utilize a stochastic extension of the Lanchester Square Law. Future research 

can explore the scenario using the Lanchester Linear Law.  

In the stochastic version of Lanchester’s Squared Law, the time to next casualty is 

drawn from an exponential distribution with rate λ. In the case of aimed fire, the rate is 

proportional to the amount of units that Blue (denoted by x) or Red (denoted by y) has 

and the attrition coefficients for Blue (a) and Red (b). Therefore:  

 
Blue

Red

ay

bx








  (2.1) 

which gives the following expression for the determining the expected time to next 

casualty, E[X | ]x, y  and the probability Blue suffers the casualty, P[X | ]x, y : 

 
1

E[T | ]
Blue Red

x, y
 




  (2.2) 

 P[X | ] Blue

Blue Red

x, y


 



  (2.3) 

The time to next casualty is a random exponential variable with rate equal to

1/ E[X | ]x, y . Equation 2.3 is compared to a random uniform [0, 1] variable to determine 

which side suffers the casualty. If P[X | ]x, y is less than or equal to the random uniform 

variable, then Blue suffers a casualty; otherwise, Red suffers a casualty. These equations 

are employed in an event based simulation until all units are destroyed or until a time 

limit is reached.  

  



 12 

THIS PAGE IS INTENTIONALLY LEFT BLANK 

  



 13 

III. SCENARIO AND MODEL DEVELOPMENT 

A. SCENARIO 

This analysis considers a potential future naval conflict between an enemy nation, 

herein referred to as Red, and the United States, herein referred to as Blue. The Red 

nation has established a submarine blockade, either off a coast or around an island, using 

a fleet of 25 diesel submarines (SSKs). Red sinks any merchants or warships that enter 

the area, and Blue seeks to clear the blockade using its nuclear fast attack submarines 

(SSNs). 

This scenario is useful because it provides a background to conduct analysis to 

answer the following questions: 

(1) What is the best way to conduct ASW clearing operations? 

(2) Do different modeling approaches produce different answers? 

This thesis focuses on question (2) by conducting a thorough analysis of error 

propagation between the campaign and mission level model. 

B. GENERAL MODELING APPROACH 

This scenario has many parameters that are unknown to the analyst. These 

parameters, or factors, fall under three broad categories: those that are within control of 

Red, those that are within the control of Blue, and those that are beyond the control of 

either force. The analysis ultimately seeks to determine the most prominent factors that 

affect the outcome of the campaign within Blue and Red’s control. In addition, the 

analysis seeks to determine whether the method of choosing the parameters in the 

hierarchal simulation changes the measures of effectiveness (MOEs). Armed with that 

insight, operational commanders can construct a force structure and concept of operations 

that can maximize the odds of success in such a scenario. 

Because it is infeasible to conduct live experiments for this scenario, the analysis 

employs stochastic simulations of the ASW clearing campaign to clear the SSK blockade. 

Stochastic simulations are selected because they can account for the uncertainties 
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associated with military operations. The analysis starts with a mission-level model using 

known unit performance characteristics as the measures of performance (MOP) to 

estimate Blue and Red submarine effectiveness in one-on-one combat by obtaining a 

mean time to kill (MTTK) and probability of kill (PK) values as the MOEs. These mission 

level MOEs are then sampled and fed into a campaign-level model, the stochastic 

Lanchester simulation, as MOPs with multiple Red and Blue submarines to obtain 

distributions for the probability Blue wins (PW) and Blue attrition when blue wins over a 

two week campaign as campaign MOEs. This relationship is summarized in Table 1.  

Table 1. Summary of hierarchal model construction. The MOEs from the 

mission model are sampled using various methods and input as MOPs 

into the campaign model. 

Level of 

Model 
Model Tool MOPs MOEs 

Mission MANA 

Submarine operating 

characteristics constructed 

from a R5FF and NOLH 

DOE (see Table 2 and 3). 

1. PK 

2. MTTK 

Campaign 

Stochastic 

Lanchester 

Square Law 

1. Units (held constant) 

2.  mean PK 

3. Sampled MTTK 

1. PW 

2. E[Blue Losses| Win] 

 

The first campaign MOE provides the odds of success, while the second 

campaign MOE quantifies the risk of the campaign. These MOEs can be compared to 

other ASW clearing options, such as using maritime patrol aircraft (MPA), in future 

analysis. This work focuses on an in-depth analysis using Blue submarines. The average 

blue attrition on the whole is not considered because when blue loses, we know that it 

loses all submarines committed to theater. This occurs because the campaign model 

assumes that the campaign continues until one side is annihilated. The campaign output is 

compared by mission model MOE sampling method and mission model MOP design of 

experiments to determine if the methods of constructing a hierarchal combat simulation 

are statistically or practically different. 
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C. ASW CLEARING OPERATIONS 

1. Mission Model 

The mission model is developed in Map Aware Non-uniform Automata (MANA). 

In the mission model, a one versus one battle between a red and blue submarine is 

programmed. In this model, a Blue submarine approaches a 60 nm x 60 nm datum to 

search for a single Red submarine. A wartime scenario is assumed, so any positive 

detection by one submarine will result in the unit firing on the detected unit. The scenario 

runs for two weeks of simulated time and records the winning unit and the time to kill as 

the MOEs. If no kill occurs then that data is excluded from the analysis. 

There are several unknown performance characteristics in the mission-level 

model. To handle the uncertainty, the study employs the design of experiment (DOE) 

techniques discussed in section I.B.1. Two techniques are employed to compare whether 

they eventually lead to the same campaign model results: a Resolution 5 Fractional 

Factorial (R5FF) and Nearly Orthogonal Latin Hypercube (NOLH) design. The R5FF 

allows the exploration of factors at their end-points and second-order interactions in 

output analysis (Sanchez and Sanchez 2005). The NOLH design provides a space-filling 

design to examine the entire range of each factor in output analysis (Sanchez, Lucas, et 

al. 2012). The NOLH design is more efficient in the number of required samples, so the 

purpose of including both is to examine whether NOLH designs ultimately sacrifice 

accuracy for efficiency.  

The performance characteristics varied for the Blue and Red submarine are 

summarized in Table 2 and Table 3. These characteristics are derived from open source 

information and varied to account for environmental and performance uncertainty beyond 

each force’s control. The NOLH experiment had 257 design points, each repeated for 40 

replications, for a total of 10,280 runs. The R5FF experiment had 512 design points, each 

repeated for 40 replications, for a total of 20,480 runs. Given an average run time per 

replication of 5 minutes and 128 processors, the R5FF experiment took approximately 27 

hours and the NOLH experiment took approximately 13 hours. The runs would have 

taken over six months on a single processor without the computing cluster.  
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Table 2. Blue submarine design factors used in the DOE for the MANA 

model. 

Factor Description Unit Low High 

Experimental Design 
Used to track whether the simulation 
was constructed using a NOLH or R5FF 
DOE. 

- - - 

Blue.Sub.Patrol.Spd 

The speed that a Blue submarine moves 
when searching for Red submarines. 
Variation accounts for environmental 
and ship acoustic characteristics. 

Knots 8 12 

Blue.Sub.Evade.Spd 

Average speed that a Blue submarine 
moves while evading a torpedo. 
Variation accounts for reaction time. 

Knots 22 28 

Blue.Sub.Mk48.Pkill 

Probability that a torpedo fired from a 
Blue submarine hits a Red submarine. 
Variation accounts for firing solution 
precision, enemy counter-measures, and 
environmental acoustic characteristics. 

- 0.5 0.7 

Blue.Sub.TA.Rng 

Maximum range that a Blue submarine 
can detect a Red submarine using the 
towed array. Variation accounts for 
varying acoustic characteristics in the 
environment and Red submarines. 

Yards 15,000 25,000 

Blue.Sub.TA.MTTD 

Average time it takes a Blue submarine 
to recognize a detection once one 
occurs. Accounts for environmental 
acoustic conditions and operator 
training. 

Hours 0.17 0.33 

Blue.Sub.Active.Sonar.Rng 

Maximum range that a Blue submarine 
can detect a Red submarine using the 
active sonar. Variation accounts for 
varying acoustic characteristics in the 
environment and Red submarines. 

Yards 4,000 6,000 

Blue.Sub.Active.Ploc The probability a Blue submarine 
detects a Red submarine on active sonar 
given the Red Submarine is within 
maximum range. Variation accounts for 
environmental acoustic conditions and 
operator training. 

- 0.6 0.8 
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Table 3. Red submarine factors used in the DOE for the MANA model. 

Factor Description Unit Low High 

Red.SSK.Evade.Spd 
Average speed that a Red submarine 
moves while evading a torpedo. 
Variation accounts for reaction time. 

Knots 9 12 

Red.SSK.Det.Range 

Maximum range that a Red submarine 
can detect a Blue submarine using the 
towed array. Variation accounts for 
varying acoustic characteristics in the 
environment and Red submarines. 

Yards 5,000 10,000 

Red.SSK.MTTD 

Average time it takes a Red submarine 
to recognize a detection once one 
occurs. Accounts for environmental 
acoustic conditions and operator 
training. 

Hours 0.17 0.33 

Red.SSK.Pkill 

Probability that a torpedo fired from a 
Red submarine hits a Blue submarine. 
Variation accounts for firing solution 
precision, enemy counter-measures, 
and environmental acoustic 
characteristics. 

- 0.3 0.6 

Red.SSK.Avg.Time.Bet.Snorkel 

Average time a Red submarine spends 
submerged before it must snorkel to 
recharge the battery. Varied to 
account for variations in electrical 
loading and to examine the effect of 
better battery technology. 

Hours 24 96 

Red.SSK.Time.in.Snorkel 

Amount of time that a Red submarine 
spends snorkeling. Varied to account 
for different battery usage upon 
snorkeling. 

Hours 1 3 

 

2. Campaign Model 

The campaign model uses the stochastic Lanchester simulation detailed in section 

II.B.2. Use of this model assumes that submarines employ aimed fire in a homogeneous 

battle. In reality, submarines would engage in a series of one versus one battles, so use of 

more detailed official DOD models that account for this behavior in future work could 

produce results that are more accurate. 

In the campaign model, there are 18 Blue submarines and 25 Red submarines. 

This is based upon an estimate of material readiness for each force, with the U.S. having 
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approximately half of its submarines stationed on each coast and a pessimistic 66–70% 

readiness. The attrition coefficient is calculated by multiplying the average PK from the 

MANA simulation by the reciprocal of the sampled MTTK, since a MTTK is only 

produced when that submarine gets a kill. The number of submarines is held constant 

because the analysis seeks to isolate the effect of sampling method for the MTTK on 

error propagation.  
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IV. ANALYSIS 

This thesis is interested in determining whether the method in constructing a 

hierarchal model affects the campaign model measures of effectiveness (MOE). First, the 

MANA output is analyzed to determine which parameters most affect a submarine’s 

mean time to kill (MTTK). In addition, the MANA output will determine P[Blue Wins] 

in a one-on-one battle. Next, several methods are employed to sample the MTTK 

distribution used to calculate the attrition coefficients in a stochastic Lanchester 

campaign to determine the distribution of Blue’s probability of winning the campaign, 

denoted W to distinguish it from the mission MOE, and the amount of Blue attrition 

when Blue wins, denoted A. Finally, the results of the stochastic Lanchester campaign are 

analyzed to determine if there is any statistical or practical significance between the 

sampling methodology and campaign MOE. The analysis uses a typical convention that 

μX is the sample mean, σX is the sample standard deviation, E[X] is the expectation, and 

V[X] is the variance of the random variable X.  

A. MANA SCENARIO 

1. Comparing Design of Experiments 

The MANA simulation of a one-on-one battle between a Red and Blue submarine 

produces two output data sets—one from the resolution V fractional factorial design 

(R5FF) and one from the nearly orthogonal Latin hypercube design (NOLH). The two 

DOEs specify different parameter values for the simulation. From herein, the data sets 

will be referred to by the design of experiments that produced them. Recall that the 

MOEs for the mission-level model are the P[Blue Wins], which occurs when a Red 

submarine is killed, and MTTK given a kill occurs for each force, so these output metrics 

are the subject of further analysis. First, the study uses JMP’s summary table feature to 

produce the μMTTK by each MANA design point, which contain 40 replications. This 

summary is performed because the analysis is primarily interested in the mean and 

variance of MTTK across a variety of favorable and unfavorable conditions, and not the 

stochastic effects within a single design point that has a very particular set of conditions.  
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The distributions for both the NOLH and R5FF output data are displayed in Figure 5 

and Figure 6. In both instances, μP[Blue Wins] is around .75, which means the model is reflecting 

the intended combat superiority of Blue submarines. The shape of these distributions and 

their summary statistics differ by experimental design. Surprisingly, the Blue μMTTK in the 

R5FF data set is higher than Red μMTTK despite the fact that μW is greater than 0.5, although 

this result is not statistically significant. One would expect Blue’s μMTTK to be lower than 

Red’s because in a one on one submarine battle, the first unit to detect the other has a decided 

advantage. Finally, note that the reason Red’s N is not always equal to the number of design 

points is because there are some design points where Red never wins, which results in no 

MTTK value generated for that design point. 

 

Figure 5. Distributions for Blue MTTK, Red MTTK, and P[Blue Wins] from 

the MANA experiment constructed with a NOLH DOE. Blue MTTK 

denotes the average amount of time a Blue submarine requires to kill a 

Red submarine, and Red MTTK denotes the average amount of time 

required for a Red submarine to kill a Blue submarine. 
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Figure 6. Distribution of Blue MTTK, Red MTTK, and P[Blue Wins] from the 

MANA experiment constructed with a R5FF DOE. 

Next, the analysis uses a student’s t-test and a Levene test to determine if the 

means and variances of Blue MTTK, Red MTTK, and P[Blue Wins] by Experimental 

Design are statistically different (Wackerly, Mendenhall III and Schaeffer 2008). 

Although the data is not normally distributed, the t-test is robust to non-normality 

(Wackerly, Mendenhall III and Schaeffer 2008). There is only a significant difference in 

average Blue MTTK for the NOLH (μ = 15.98, σ = 7.53) and R5FF (μ = 18.33, σ = 

12.04) data sets; t767 = 1.96, p = .0021. In addition, there is a significant difference in 

variance of Blue MTTK for the NOLH and R5FF design according to the Levene test; F 

= 67.96, p = 0.0001. The effect of experimental design on Red MTTK and P[Blue Wins] 

is not statistically significant. At this stage of the analysis, the differences among the 

mean and standard deviations of MTTKs and P[Blue Wins] are not practically 

significant; under three hours is a negligible difference in time in a submarine campaign 

that takes weeks, and there is only a 0.003 difference in P[Blue Wins]. This confirms the 
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efficiency of the NOLH design does not produce different results in most cases; the same 

results are achieved with approximately half the runs. 

However, because the difference in Blue μMTTK is statistically significant by 

experimental design, and because the shapes of the distributions vary, the analysis will 

sample from both data sets to determine the attrition coefficient for the Lanchester 

models and make a detailed comparison of each experiment. Even though these data sets 

are not practically significant, the statistically different results could magnify themselves 

to become practically significant in the campaign output analysis. 

2. Linear Regression Analysis 

A linear regression analysis is performed to determine which mission-level 

measures of performance (MOPs) are most significant in determining the mission level 

MOEs, MTTK, and P[Blue Wins]. Although the focus of this thesis is not to determine 

how to engineer a better submarine, the regression analysis helps validate the mission 

level model and provide some insight into the most important factors affecting unit 

interactions. If the model is performing well, then there will be a strong relationship 

between one or more input factors on Blue and Red MTTK. 

A linear model is fit to Blue MTTK for each experimental design to determine 

which factors are most significant in predicting the MTTK. In order to find the best linear 

model among several variables, the analysis uses JMP’s stepwise platform that iteratively 

tests predictors and produces the model with the minimum Bayesian information criterion 

(BIC). Although a metric like time is typically not a linear relationship, this is handled by 

transforming the predicted values with a natural logarithm (Wackerly, Mendenhall III and 

Schaeffer 2008). The model considers main effects, quadratic effects, and two-factor 

interactions between variables. Once JMP produces a recommended model, the analysis 

conducts additional pruning of variables in order to produce a model that meets the 

assumptions of a linear model (Wackerly, Mendenhall III and Schaeffer 2008). 

The regression reports for Blue MTTK in the NOLH and R5FF DOE fitted with a 

natural logarithm transformation on the predicted values are displayed in Figure 7 and 

Figure 8. The NOLH model has fewer parameters and lower R2, 0.76 versus 0.88, but 
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does a better job at meeting all of the assumptions of a linear model (Wackerly, 

Mendenhall III and Schaeffer 2008; Carver 2010). Therefore, despite its lower R2, the 

NOLH design of experiments produces data that better fits a linear model than the R5FF 

design. The residual by predicted plot for the R5FF does not illustrate the random scatter 

pattern that would indicate that the residuals are normally distributed with constant 

variance, and the large number of terms included in the stepwise regression indicates that 

the model may be over-fit or may not capture a non-linear relationship. However, 

removing the interaction terms does not achieve a normally distributed residual versus 

fitted plot, so the final model includes them.  

 

Figure 7. Blue MTTK regression report, NOLH DOE. The parameter 

estimates are fitted in a model with a natural logarithm transformation of 

the estimated Blue MTTK. 
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Figure 8. Blue MTTK regression report, R5FF DOE. The parameter estimates 

are fitted in a model with a natural logarithm transformation of the 

estimated Blue MTTK. 

In addition, both analyses fail the Shapiro-Wilks test for normally distributed 

residuals, although the departure is small according to the normal quantile plots in Figure 

9. The departure from normality is due to the unpredictability of MTTK values higher 

than 25 hours, which are outliers according to the previous distributions. The lack of 

normally distributed residuals is not crucial to further analysis since the purpose of this 

regression is to ensure that the statistically important factors have real-world significance; 

if it were, it could be eliminated by filtering MTTKs over 25 hours, or using survival 

analysis.  
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Figure 9. Blue MTTK test for normality of residuals. 

Both models indicate that the most significant factor is the Blue submarine’s 

towed array time to detect. The second most significant parameter in both models is the 

range at which SSKs detect Blue submarines. Therefore, according to the MANA model, 

the most important factor for detecting a Red submarine is having a capable towed array 

that can resolve signal from noise and well-trained operators to detect the submarine on 

the displays. Since a towed array is Blue’s primary ASW sensor, and in reality there is a 

distinct advantage to having the first shot in submarine warfare, the model is performing 

adequately enough to proceed with further analysis. 

B.  STOCHASTIC LANCHESTER ANALYSIS 

Recall that the MTTK and PW are used to construct the attrition coefficient for a 

stochastic Lanchester campaign model, where: 

 
Blue

P[Blue Wins]
b =

MTTK
  (4.1) 

 
Red

P[Red Wins]
a =

MTTK
  (4.2) 

 P[Red Wins] = 1- P[Blue Wins]   (4.3) 
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 The P[Blue Wins] use the means displayed in Figure 5 and Figure 6 while each 

force’s MTTK will be sampled from the MANA output using a variety of methods. The 

goal is to compare whether the output of the stochastic Lanchester simulation is 

significant, both statistically and in terms of real-world numbers. The measures of 

effectiveness (MOE) for this analysis are μW and μA in a fight-to-the-finish. In addition, to 

explore how variance propagates through hierarchal models, the analysis will statistically 

compare E[σW] and E[σA] by sampling method. The mean is selected because the 

summary statistics become approximately normal as the data sets are summed, so they 

can be tested using student’s t-test (Wackerly, Mendenhall III and Schaeffer 2008).  

In addition, recall that the first step in output processing is to average the effects 

by each design point. After this is performed, a subsequent test on variance of the output 

would be testing differences in V[μW] and V[μA], the variance in the summarized average 

means for W and A. This is not the value the analysis is interested in obtaining, and 

would give a false, narrow estimate of V[W] and V[A]. JMP allows the user to retain the 

standard deviation of interest as data sets are summarized. Since sums of random 

variables are approximately normal, a traditional t-test can be used to compare the 

average variance for W and A. 

1. Preliminary Exploration: Sample from Raw versus Summarized 

Output 

a. Overview and Methodology. 

The first set of experiments utilizes either the mean MTTK from the MANA 

output or random sampling from the MANA output, with replacement, repeated ten times 

with different random seeds. The sampling methods are summarized in Table 4. This 

gives unique attrition coefficients for Red and Blue that are input into stochastic 

Lanchester simulations. From herein, each unique combination of attrition coefficients is 

a “design point,” each of the 10 random samples is referred to as a “sampling index,” and 

each method of sampling from the MANA output is an “experiment.” Each design point 

is run in a stochastic Lanchester campaign for 30 replications. Ten sampling indices and 

30 repetitions are chosen because it mimics the computing limitations on large-scale 
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DOD simulations that are computationally expensive. In addition, ten indices serve two 

analysis purposes: first, to determine if there is a difference in the MOEs based on luck, 

and second because it allows use of the student’s t-test to compare averages.   

The overview of the analysis workflow is displayed in Figure 10. The blue region 

is the mission model analysis, the orange region is the sampled attrition coefficient 

campaign model analysis, the green region is the mean attrition coefficient campaign 

model analysis, and the gray region is the final statistical comparison. When sampling 

from the summary output, the experiment takes a 25% sample across the 512 design 

points for the R5FF data set and 257 design points for the NOLH data set, each design 

point has the 40 MANA replications summarized by μMTTK. When sampling from the raw 

output data, the random sampling takes 25% of each design point before the MTTK 

summarized by its mean over 40 replications. In the event where both Red and Blue 

MTTK values are sampled, the amount is limited to 25% of Red’s output because using 

25% of Blue’s output would result in always sampling 100% of Red’s MTTK. This is 

because there are significantly more cases where Blue wins the one-on-one engagement. 

Finally, when constructing the experiment for the mean case, the analysis runs a total of 

300 repetitions, but divides this output into 10 distinct groups. This is performed to create 

the same 10 data points obtained in the sampled cases to perform statistical comparisons. 
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Figure 10. Overview of analytical workflow. The blue region is the mission 

model analysis, the orange region is the sampled attrition coefficient 

campaign model analysis, the green region is the mean attrition 

coefficient campaign model analysis, and the gray region is the final 

statistical comparison. 
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Table 4. Summary of sampling methodologies used to construct the 

stochastic Lanchester experiments. The total number of replications 

for each experiment is equal to the number of design points × 30 

replications per design point × 10 sample indexes. 

Sampling 

Method 

Name 

Description Data Sampled 
Design 

Points 

FF Average 

Both 

Uses average MTTK from the MANA R5FF 

data set for both Red and Blue Attrition 

Coefficients.  

NA 1 

NOLH 

Average Both 

Same as FF Average Both, except MTTK is 

taken from the MANA NOLH Data Set. 
NA 1 

FF Raw 

Sample Blue 

Samples only Blue MTTK from the un-

summarized MANA R5FF output. Only 

uses data points when Blue won the 1 versus 

1 battle because otherwise the data is blank. 

25% of MANA 

FF Blue MTTK 

results. 

3,721 

NOLH Raw 

Sample Blue 

Same as FF Raw Sample Blue, except 

MTTK is sampled from the MANA NOLH 

Data Set.  

25% of MANA 

NOLH Blue 

MTTK results. 

720 

 

FF Raw 

Sample Red 

Samples only Red MTTK from the un-

summarized MANA output. Only uses data 

points when Red won the 1 versus 1 battle 

because otherwise the data is blank. 

25% of MANA 

FF Red MTTK 

results. 

123 

NOLH Raw 

Sample Red 

Same as FF Raw Sample Red, except 

MTTK is sampled from the MANA NOLH 

Data Set. 

25% of MANA 

NOLH Red 

MTTK Results. 

1,859 

FF Raw 

Sample Both 

Samples both Blue and Red MTTK from the 

un-summarized MANA R5FF output. Uses 

same amount of samples as the FF Raw 

Sample Red because using 25% for Blue 

MTTK results in sampling 100% of Red 

output. 

25% of MANA 

FF Red MTTK 

Results. 

418 

NOLH Raw 

Sample Both 

Samples both Blue and Red MTTK from the 

un-summarized MANA output. Uses same 

amount of samples as the NOLH Raw 

Sample Red because using 25% for Blue 

MTTK results in sampling 100% of Red 

output. 

25% of MANA 

NOLH Red 

MTTK Results. 

418 

FF Summary 

Sample Both 

Samples both Blue and Red MTTK from the 

summarized MANA R5FF output.  

25% of MANA 

R5FF results. 
1,230 

NOLH 

Summary 

Sample Both 

Samples both Blue and Red MTTK from the 

summarized MANA R5FF output. 

25% of MANA 

NOLH results. 
64 
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The output of each stochastic Lanchester replication produces the Blue attrition 

and a binary representation of whether Blue wins. This is then summarized in JMP, first 

by design point, and then by random sampling index, with the result being a table that has 

10 values for every sampling methodology to conduct statistics on. Although 10 values 

do not seem statistically significant, each value will be the summary of the amount of 

data points equal to the right hand column in Table 4, and therefore will give good 

indication of statistical differences. Further exploration with 50 column indices will be 

performed based upon the results of the preliminary analysis. As with the MANA output, 

this summary is performed because the analysis is interested in the difference in results 

across a variety of conditions, and not on the randomness of results within particular 

conditions.  

b. Exploring the Effects of Experimental Design 

The first comparison is to determine if there is a difference between the campaign 

MOEs when using the MTTK generated from the R5FF and the NOLH MANA data sets. 

The distributions of the MOEs are reproduced in Figure 11 and Figure 12. Figure 11 

displays the distribution of the Blue attrition given Blue wins a submarine campaign with 

18 Blue SSNs versus 25 Red SSKs, modeled with a stochastic Lanchester simulation. 

The distributions are separated by the way the MANA model is designed in order to 

determine if there is an effect of mission-model DOE on campaign model output. Figure 

12 displays the distribution of the odds that Blue wins this engagement, separated by the 

way the MANA model is designed. It’s clear that the campaign MOE distributions are 

different according to the mission model DOE. While the mean and the standard 

deviations of the outcomes are very close, the shape of the distributions is quite different. 

An interesting observation regarding the Figure 11 is that Blue never wins when average 

losses exceed half its force. 
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Figure 11. Distributions of Blue attrition when Blue wins according to MANA 

experimental design. 
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Figure 12. Distribution of Blue winning percentage according to MANA 

experimental design. 

The analysis uses t-tests with α = 0.05 to determine if the MANA experimental 

design has a statistically significant effect on the μA, E[σA], μW, and E[σW]. The reason that 

a t-test is used to compare E[σA] and E[σW] summarized by column index rather than 

using a Levene test to compare variance across each unique attrition coefficient is 

because the latter test has over 70,000 data points; this virtually guarantees that the test 

will find a statistically significant difference as long as the values are not identical. 

There is a significant difference at the 0.05 level in μW for the NOLH (μ = .7443, σ 

= .167) and R5FF (μ = .6792, σ = .167) data sets in a one-tailed t-test; t98 = 1.857, p-value 

= .0331. There is no statistically significant effect of experimental design on any of the 

other parameters in a one-tailed test, and there is no statistically significant effect of 

experimental design in a two-tailed t-test. There is also a practical difference of 13% 

change in μW when changing the experimental design for the MANA simulation. Because 
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experimental design was significant in at least one campaign MOE, it is kept as a factor 

in further exploratory analysis. 

c. Analyzing Raw versus Summarized Data 

The next step of the analysis examines whether sampling from the unprocessed 

MANA data, or raw output, versus sampling average MTTK by design point, or 

summarized output, affects the campaign MOEs. When the raw output is sampled, 25% 

of each MANA design point output is sampled. In the case where both Blue and Red 

MTTK are sampled, the analysis takes 25% of Red’s data because there are fewer cases 

where Red gets the kill. Refer to Table 4 for sampling methods and descriptions.  

The analysis uses JMP’s one-way platform to conduct statistical comparisons. 

This feature is useful because it provides a graphical representation of multiple t-tests that 

is easy to interpret for analysis. Figure 13 and Figure 14 display the results of these tests 

for μA and E[σA], respectively. In the top part of each figure, the green diamonds represent 

the average values and their 95% confidence interval by sampling methodology. Each dot 

represents the overall mean of one of the ten sample indices, and may overlap depending 

on the results. The black line in the center represents the overall mean. The circles to the 

right of the figure are centered on each mean. If two circles to the right of this figure 

overlap, then those corresponding means are statistically the same. If not, the values are 

statistically different. In the bottom half of each figure, the blue banded region represents 

the overall mean and 95% confidence interval. If the colored dots fall within the banded 

region, then they are statistically similar to the group mean.  

According to Figure 13, the mean Blue attrition values are statistically different 

under most cases by sampling methodology. Only two values fall within the 95% 

confidence interval for the overall group mean. The R2 value for a one-way ANOVA of 

mean Blue attrition by sampling method is .956, indicating a strong relationship between 

sampling methodology and μA. The difference in variance is also significant, but not as 

pronounced. Many of the E[σA] values are statistically similar, and four values fall within 

the 95% confidence interval for the overall group mean. The R2 for one-way ANOVA of 

E[σA] by sampling method is 0.596, indicating a weaker association. It is clear that 
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sampling methodology has a strong relationship, although this analysis confirms that 

there is a weak statistical difference between the R5FF and NOLH data sets. 

 

Figure 13. Statistical comparison of average Blue attrition when Blue wins. 

Circles that don’t overlap indicate values that are statistically different, 

and points outside the blue banded line indicate when values differ 

statistically from the overall mean among all data points. 
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Figure 14. Statistical comparison of the average standard deviation of Blue 

attrition when Blue wins. Circles that don’t overlap indicate values that 

are statistically different, and points outside the blue banded line 

indicate when values differ statistically from the overall mean among all 

data points. 
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Next, the analysis explores μW and E[σW] using the same technique. The graphs 

are displayed in Figure 15 and Figure 16. The effect of sampling method is more 

pronounced on μW than it was for Blue attrition. For the average, only two sets of data are 

statistically the same and two values fall within the 95% confidence interval of the group 

mean, and the R2 is 0.974, indicating a strong correlation between sampling method and 

μW. The effect on E[σW] is slightly weaker, with more values falling within statistical 

range of each other and an R2 of 0.833, indicating a moderate correlation. However, no 

values fall within the 95% confidence interval of the group average. 
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Figure 15. Statistical comparison of average Blue winning percentage. Circles 

that don’t overlap indicate values that are statistically different, and 

points outside the blue banded line indicate when values differ 

statistically from the overall mean among all data points. 
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Figure 16. Statistical comparison of average standard deviations of Blue 

winning percentage. Circles that don’t overlap indicate values that are 

statistically different, and points outside the blue banded line indicate 

when values differ statistically from the overall mean among all data 

points. 
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It is interesting that the effect of sampling methodology is more pronounced on 

μW than on μA. However, E[σW] is relatively constant around 0.4, except in the case where 

both average MTTK values were used, while E[σA] fluctuates more. The reason for this 

may lie in their underlying distributions. Since the stochastic Lanchester model is 

constructed using exponentially distributed events, the attrition is two-dimensional 

continuous time Markov Chain. The result of decreased variance means that the results of 

stochastic simulations will be closer together. On the other hand, the chances Blue wins 

the campaign, PW, is derived from a binomial distribution with mean np and variance 

np(1-p), where p is the chances Blue wins the one-on-one engagement from the MANA 

model. In addition there is no filtering for when Blue wins leading to a wider range of 

conditions. 

Another interesting result is that the worst-case μA and μW for Blue occurs when 

the sampling method uses the average Blue MTTK and samples Red MTTK, while the 

best case occurs when the sampling method, aside from using both means, uses average 

Red MTTK and samples Blue MTTK. Let B and R denote the distribution of MTTK for 

Blue and Red, respectively. Let X and Y denote random samples from B and R, 

respectively: 

 ,F(X Y)= P[X >Y]   (4.4) 

 P[  E[ ]]G(X)= X Y   (4.5) 

 ( ) P[E[ ]  ]H Y X Y    (4.6) 

What this experiment reveals is that if E[B] > E[A] in any distribution, then: 

   (Y) G(X)> H F X,Y   (4.7) 

With sampling the distributions displayed in paragraph I.B.1.b, P[b > a ] = 0.920, 

P[b > E[a]] = 0.993, P[E[b] > a] = 0.977. The discrepancy arises because this simulation 

uses the Lanchester square law, so for Blue to win in a deterministic case: 

 
2

2

y
b a

x
   (4.8) 

The stochastic simulation allows for some variance in b and a based on luck, but 

in general this means that b > 1.92a for Blue to win in this simulation. Therefore, P[b > 
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1.92a] = 0.727, P[b > 1.92(E[a])] = 0.862, and P[E[b] > 1.92a] = 0.652. This is more 

aligned with the empirical results.  

2. Exploratory Analysis of Summarized Output. 

a. Overview and Methodology. 

The experiments conducted above used 10 column indices. The problem arising 

from this is that results of the stochastic Lanchester simulations did not begin to 

approximate the normal distribution. In addition, some may claim that the use of 10 

sample indices is too weak statistically, so an additional experiment is conducted using 

50 column indices. However, because the amount of runs would become too 

computationally expensive when sampling 25% of the raw MANA output, and because 

the previous analysis revealed that there is usually a bigger difference between the R5FF 

and NOLH data sets than the sample raw both and sample summary both data sets, the 

follow-on analysis conducts all sampling from MANA output with summarized means by 

design point.  

The analysis will continue to explore the difference between a R5FF and NOLH 

constructed mission model propagated through a campaign model. In addition, the 

analysis adds two sampling methodologies used to obtain MTTK values to calculate 

attrition coefficients for the stochastic Lanchester model: “DOE All” and “DOE 

Outliers.” The former constructs a NOLH set of MTTK based on the min and max of the 

MANA output, while the latter constructs a NOLH set of MTTK based on the min and 

max MANA output excluding statistical outliers. Statistical outliers are anything greater 

than the 3rd Quartile + 1.5 × (Interquartile Range), displayed in Figure 5 and Figure 6. 

The sampling methods are summarized in Table 5. Because the MANA output is 

summarized to obtain the mean of each MANA design point prior to sampling, there are 

no blank points and thus no variance in the amount of design points. All experiments of 

the stochastic Lanchester model except the DOE cases use 50 sample indices × 50 design 

points × 30 replications, where the experiments that use the average MTTK just have 

additional replications at the same value. The DOE sampling methods use 50 column 

indices × 33 design points × 30 replications; this is simply because of what the Naval 
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Postgraduate School NOLH algorithm, written by Dr. Tom Lucas, outputs for up to 11 

factors. 

Table 5. Summary of exploratory sampling methods 

 

 

 

 

 

 

 

 

b. Analysis with More Statistical Power 

The same analytical procedure discussed in section IV.B.1.c is performed here. 

Once again, JMP’s one-way analysis platform provides a simple way to graphically 

present the results across a range of multiple values in Figure 17 and Figure 18, which 

display the one-way analysis of μA and E[σA] versus sampling method. This time, there 

are 50 dots in the top part of the figure that represent the mean of each sampling index. 

As expected, the greater statistical power gained from conducting 50 column indexes 

results in more values becoming statistically different. It is interesting that the “DOE All” 

Sampling 

Method 

Name 

Description 

FF Average 

Both 

Uses average MTTK from the MANA R5FF 

data set for both Red and Blue attrition 

coefficients.  

NOLH 

Average Both 

Same as FF Average Both, except MTTK is 

taken from the MANA NOLH data set. 

FF Sample 

Blue 

Samples only Blue MTTK from the summarized 

MANA R5FF output. 

NOLH 

Sample Blue 

Same as FF Sample Blue, except MTTK is 

sampled from the MANA NOLH data set.  

FF Sample 

Red 

Samples only Red MTTK from the summarized 

MANA output.  

NOLH 

Sample Red 

Same as FF Raw Sample Red, except MTTK is 

sampled from the MANA NOLH data set. 

FF Sample 

Both 

Samples both Blue and Red MTTK from the un-

summarized MANA R5FF output. 

NOLH 

Sample Both 

Samples both Blue and Red MTTK from the un-

summarized MANA output.  

DOE All 
Samples both Blue and Red MTTK from the 

summarized MANA R5FF output.  

DOE No 

Outliers 

Samples both Blue and Red MTTK from the 

summarized MANA R5FF output. 
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sample method produces extremely biased results. This occurs because the NOLH 

algorithm seeks to provide equal sample points along the entire range provided, and 

Red’s MTTK distribution had a longer tail than Blue’s. Therefore, the NOLH algorithm 

performs poorly with tailed distributions, such as the MTTK data produced from the 

MANA experiment. However, the bias is removed by removing outliers. Care must be 

used when constructing NOLH designs to avoid outliers. Alternatively, using a range of 

means, rather than a minimum and maximum value from the raw distribution, would 

produce better results. When the DOE All set is not included in the ANOVA analysis, the 

R2 changes from 0.864 and 0.863 for the one-way analysis of μA and E[σA] versus 

sampling method, respectively, to 0.787 and 0.867. 
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Figure 17.  Statistical comparison of average Blue attrition with a bigger 

sample. Circles that don’t overlap indicate values that are statistically 

different, and points outside the blue banded line indicate when values 

differ statistically from the overall mean among all data points. 
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Figure 18. Statistical comparison of the average standard deviations of Blue 

attrition with a bigger sample. Circles that don’t overlap indicate values 

that are statistically different, and points outside the blue banded line 

indicate when values differ statistically from the overall mean among all 

data points. 
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The analysis is repeated one more time with μW and E[σW] versus sampling 

method. The results are displayed in Figure 19 and Figure 20. Again, the additional 

statistical power results in almost all values being statistically different. There is a 

significant relationship between μW and E[σW] versus sampling method, with R2 = 0.878 

and 0.682, respectively.  
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Figure 19. Statistical comparison of average Blue winning percentage with a 

bigger sample. Circles that don’t overlap indicate values that are 

statistically different, and points outside the blue banded line indicate 

when values differ statistically from the overall mean among all data 

points. 
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Figure 20. Statistical comparison of average standard deviations of Blue 

winning percentage with a bigger sample. Circles that don’t overlap 

indicate values that are statistically different, and points outside the blue 

banded line indicate when values differ statistically from the overall 

mean among all data points. 
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Similar to the 10 column index case, using the average MTTK for both Red and 

Blue or just sampling Blue produces the most optimistic results for μW and μA. 

Additionally, while E[σA] varies significantly in practical terms by experimental design, 

from as high as 5 to as low as 2, E[σW] is practically constant at 0.30 +/- 0.05. Therefore, 

the sampling method typically produces biased results in the mean output, but may not 

always produce a practically biased estimate of the variance. Future work can focus on 

determining which method produces maximum likelihood of obtaining the minimum 

variance unbiased estimate of the true mean. 
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V. DISCUSSION 

This thesis explores how error can propagate through hierarchal combat models. 

Paul K. Davis in his technical report for RAND corporation in 2007 stated that feeding 

both mean and variance information from the lower-level output to the higher-level input 

can increase accuracy (Davis and Henninger 2007). This work employed a variety of 

sampling methods to include not just the variance of the mission model output, but also 

the distribution of values. The results in Chapter IV demonstrate that random sampling 

may not eliminate bias in the mean nor misrepresentation of the variance. 

A. QUANTIFYING THE RISK 

These results have significant practical significance when quantifying risk to 

military commanders. The results found that the average chance of winning can be as 

high as 0.94 when the simulation is constructed with average mean time to kill (MTTK) 

for each force to as low as 0.66 when sampling from both forces. The standard deviation 

for this estimate is around 0.25 - 0.35 regardless of how the campaign model is 

constructed. With such a large discrepancy in the mean outcome and such a relatively 

large standard deviation, the best estimate one can give on these results is “better than 

half.”  

The other measure of effectiveness (MOE) for the campaign model is average 

losses given Blue wins. While this is a useful metric for simulation analysis, it is not 

useful in communicating risk to a military commander because it is inaccurate (Savage 

2012). A battle such as this would only be fought one time. Nevertheless, one can make 

use of the mean and variance of the campaign output to provide a better estimate of risk 

by estimating the chances of success and the chances that a certain amount of units are 

lost. This risk assessment is displayed in the graph in Figure 21. This graph displays the 

odds that Blue loses a particular amount of submarines by sampling methodology. This 

graph demonstrates that the risk estimate is heavily dependent upon the way the 

hierarchal combat model is constructed rather than factors that are input into the model 

itself.  
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Figure 21. Graph of risk profiles by sampling methodology. Each line indicates 

the chances of losing at least 3, 5, or 9 submarines. Notice that the risk 

differs substantially based on how the mission model output is sampled. 

B. DESIGN DECISIONS 

The most useful element of stochastic combat simulations is not its predictive 

capability, but its descriptive capability. This is because data for combat simulations is 

hard to find, often inaccurate, and dependent on environmental conditions. As discussed 

in paragraph I.A, the basis for this process is to inform decisions on new platforms and 

technologies.  

Unfortunately, the errors discovered in this work also affect this process. Consider 

a scenario where the Chief of Naval Operations (CNO) must decide between funding 

improvements between multiple platforms, one of them being fast attack submarines. 

OPNAV N81 runs a simulation using the current practice of propagating means and 

provides an optimistic estimate for winning the battle. Moreover, they estimate that 

investing in new submarine technology will only raise the chances of winning from 0.78 
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to 0.80, save one submarine in the battle, and cost $10 billion. Clearly, this is not a very 

large payoff and the Navy would get more value by investing in other technology. On the 

other hand, if the simulation were constructed by sampling the mission-model output 

with more pessimistic estimates, now the improvement might be from 0.6 to 0.7 and save 

five submarines in the battle for $10 billion. This is a substantial improvement that would 

warrant further investments. The key here is that even if both models reveal the same 

relative importance of design factors, the practical impact of those factors can be 

drastically different.  

C. HIERARCHAL META-MODELS 

In addition, the current process of using linear regression to construct hierarchal 

meta-models of stochastic combat simulations cannot accurately estimate how error 

propagates through the results. When linear models provide a confidence interval, they 

are estimating the interval for the line of regression and not the confidence interval for 

the actual values themselves (Wackerly, Mendenhall III and Schaeffer 2008). 

The best use of hierarchal meta-models is to provide a coarse estimate of the 

mean output. They can be useful to provide fast estimates and to determine which 

combination of factors leads to the best results. However, they cannot accurately 

quantify, in practical terms, the effect of those factors on the output. 

D. FUTURE WORK: IMPLICATIONS FOR DOD COMBAT MODELS 

The models employed in this thesis are not accredited by the Department of 

Defense (DOD). Nevertheless, they can still provide useful insight into the practice of 

hierarchal combat modeling. This study demonstrates that the way in which variance in 

the lower-level model output is handled can have significant effects in the higher-level 

model output. The current practice of propagating averages is almost certainly providing 

a false estimate of campaign results. 

There is potential for several future projects on this subject. First, empirical data 

can be collected by running a similar experimental design using accredited models. This 

will confirm that the bias in the mean and inaccuracies in variance also propagate through 
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these models. Secondly, there is potential work to mathematically derive formulae that 

can prove which method provides the minimum variance unbiased estimate of the mean. 

Third, an analysis can use a force-on-force mission-level simulation to better capture 

spatial effects and use U.S. Arms algorithms to adjust the attrition coefficients (Yildirim 

1999). Finally, there is the opportunity for deriving a mathematical formula that can 

propagate error through hierarchal combat models. 
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VI. APPENDIX 

Below is the code for a stochastic Lanchester campaign model using the squared law. The 

model takes in a spreadsheet of MTTK values that are randomly sampled from MANA 

output. It iterates through each pair of coefficient and simulates a fight to the finish 

between Red and Blue. It calculates the attrition coefficients by dividing the average 

P[kill] by MTTK for each side, then conducts the Lanchester simulation for 30 reps. It 

returns the starting and ending conditions to a .csv file as output to be analyzed. The code 

can be modified to substitute the Blue or Red average values instead of reading them 

from a spreadsheet. 

 
import numpy as np 

import scipy as sp 

from scipy import stats 

import random 

import csv 

import matplotlib.pyplot as plt 

import os 

 

# change working directory 

os.chdir(‘C:\Users\Russell\Documents\OA5000 - Thesis\Campaign Models\ASW\NOLH\Big Samples 

Different Seed’) 

 

# function to import csvs. 

def getParameters(filename): 

    par = np.loadtxt(filename, delimiter = ‘,’, skiprows = 1) 

    return par 

 

### the stochastic lanchester changes X forces to m, Y forces to N. The rate at which x forces are killed 

(square law) is a*n, the rate at which Y forces are killed is b*m. a = rate at which 1 red kills 1 blue; b = rate 

at which 1 blue kills 1 red. 

 

def EulerStochLan(m0, n0, a, b, mbp, nbp, tlimit): 

    m = m0 

    n = n0 

    t = 0.0   

    endOfBattle = False 

     

    while endOfBattle == False: 

        rate = m*b + n*a                   # determine time to next kill and increment time. n/m  

    # because P-3s only attack subs in its sector 

        t = t + random.expovariate(rate) 

        prob_x_killed = n*a/(n*a + m*b)    # determine probability of a casualty and flip the 

         #coin 

        check = random.uniform(0,1) 

        if check < prob_x_killed: 

            m -= 1 

        else: 

            n -= 1 

        if m <= mbp or n <= nbp or t >= tlimit: 

            endOfBattle=True 
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    if m <= mbp: 

        winner = 0          # 0 means red wins, used so you can calculate the numerical mean of winning. 

    elif n <= nbp: 

        winner = 1        # 1 means blue wins. 

    elif m0 - m < n0 - n: 

        winner = 1 

    else: 

        winner = 0 

    blue_losses = m0 - m 

    red_losses = n0 - n 

    output = [m, n, blue_losses, red_losses, t, winner] 

    return output 

     

def subbattle_sampled_summary(): 

    blue_mttk = getParameters(‘Blue NOLH MTTK 50 Samples.csv’) 

    red_mttk = getParameters(‘Red NOLH MTTK 50 Samples.csv’)   # import the randomly sampled list of 

mean time to kill 

    blue_mttk = blue_mttk.transpose() 

    red_mttk = red_mttk.transpose() 

    pkill_blue = 0.761                         # Based on mean time Blue wins from MANA data 

    pkill_red = 1 - pkill_blue 

    results = []                                # stores table of starting parameters and results for analysis 

    out = []                                    # stores temporary output 

    dp = 0                                      # design point for summary statistics 

    Type = ‘NOLH Sample Both’                                      

    for row in range(0, len(blue_mttk)): 

        dp += 1 

        for item in range(0, len(blue_mttk[row])):        

            a = pkill_red * 1.0 / red_mttk[row][item]        # rate at which red kills blue 

            b = pkill_blue * 1.0 / blue_mttk[row][item]        # rate at which blue kills red 

            m0 = 18.0                             # set initial blue forces 

            n0 = 25.0                            # set initial red forces 

            trial = 0 

            for i in range(0, 30):              # stochastic simulation runs. 30 is for statistical power. 

                trial += 1 

                mbp = 0.0 * m0 

                nbp = 0.0 * n0 

                out = EulerStochLan(m0, n0, a, b, mbp, nbp, 336) 

                out.insert(0, b) 

                out.insert(0, a) 

                out.insert(0, n0) 

                out.insert(0, m0) 

                out.insert(0, dp) 

                out.insert(0, Type) 

                results.append(out) 

 

    fileout = open(‘SubOnSub_results_sampleboth.csv’, ‘wb’) 

    writer = csv.writer(fileout, dialect = ‘excel’) 

    writer.writerow([“Sample Type,” “Design Point,” “Initial Blue,” “Initial Red,” “a,” “b,” “Final Blue,” 

“Final Red,” “Blue Losses,” “Red Losses,” “time,” “winner”]) 

    writer.writerows(results) 

    fileout.close() 

 

                out.insert(0, a) 
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                out.insert(0, n0) 

                out.insert(0, m0) 

                out.insert(0, dp) 

                out.insert(0, Type) 

                results.append(out) 

 

    fileout = open(‘SubOnSub_results_filling_nooutliers.csv’, ‘wb’) 

    writer = csv.writer(fileout, dialect = ‘excel’) 

    writer.writerow([“Sample Type,” “Design Point,” “Initial Blue,” “Initial Red,” “a,” “b,” “Final Blue,” 

“Final Red,” “Blue Losses,” “Red Losses,” “time,” “winner”]) 

    writer.writerows(results) 

    fileout.close() 
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